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We study gauge theories having a slowly varying running coupling and chlral symmetry breaking. It has been suggested that 
such theories contain a hght dflaton, a pseudo-Goldstone boson assocmted with approxtmate scale mvanance. We calculate ~ts 
mass by studying the scahng properties of the effective action describing chiral symmetry breaking. We also consider the effect of 
a physical high energy cutoffas motivated m a techmcolor context. Our results indicate that a hght dllaton is unhkely 

We wish to study asymptotically free gauge theories containing no exphcit dimensionful parameters and 
having a small r-function over the momentum range relevant for chiral symmetry breaking. Below we shall 
exhibit theories of this type for which we can trust the lowest order perturbative r-function throughout this 
momentum range. But if the r-function is small then the theory possesses an approximate scale invariance, and 
chiral symmetry breaking would imply a spontaneous breaking of this scale symmetry. This makes necessary a 
pseudo-Goldstone boson associated with broken approximate scale mvariance, a pseudo-dilaton (PD) [ 1,2]. 
The nonzero r-function is the only explicit source of  scale symmetry breaking, and the PD mass is related to ~t 
in some way. We might guess that the mass squared is proportional to the value of the r-function at the scale of  
chiral symmetry breaking [ 3 ]. Others [ 4 ] suggest that the mass is given by the confinement scale A, the inverse 
size ofglueball states. The theories we study will have A less than the chiral symmetry breaking scale A~,. 

The PD will appear in the effective theory immediately below A~,. In this paper we will focus on short &stance 
contributions to the PD mass, from physics at energy scales above A~,. But there will also be contributions from 
lower scales. For example, at scales <A~, but >A there are still gluons in the effective theory and there should 
be an induced PD coupling to  (Fa~,) 2 . At scales <A, after integrating out the gluons, we will then find further 
contributions to the PD mass. We do not attempt to calculate these contributions, but they should be character- 
ized by A. The short distance contributions we do calculate may well be larger than A in which case our calcu- 
lation would give a useful lower bound on the PD mass. 

A gauge theory with a slowly varying running couphng is of interest [ 1-9 ] as a technicolor [ 10 ] interaction 
responsible for breaking the weak interactions. This was first discussed [ 5 ] in the context of a nontrivial ultra- 
violet fixed point where anomalous scaling was shown to break the naive connection between fermion masses 
and flavor changing neutral currents (FCNCs) in extended technicolor theories. FCNCs are suppressed and 
technipion masses are increased. Then in ref. [ 7 ] we analyzed the Schwinger-Dyson equation in ladder approx- 
imation in which we used a running coupling satisfying pOvot ( p ) = -  bo~ 2(p). We numerically solved for the 
self-energy X(p)  for various b. We found that the smaller b was the less rapidly X(p)  fell with p and that this 
implied a suppression of FCNCs. This point was made [2,3,8] again for b--0  where X(p) could be studied 
analytically. A detailed discussion of the behavior of X(p) for small b and the connection with FCNCs may be 
found in ref. [ 9 ]. 

An extended technicolor scale supplies a physical high energy cutoff at which the technicolor interactions 
should no longer be considered in isolation. Thus with the technicolor application in mind we will consider 
gauge theories in which we insert a high momentum cutoffM>>A~, by hand. This introduces another source of 
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explicit scale breaking into the theory and produces a further high energy contribution to the PD mass which 
we will treat. (In the case that one studies a Schwinger-Dyson equation with constant coupling (b = 0) one 
finds [ 11 ] that an ultraviolet cutoff is actually necessary for a chiral symmetry breaking solution to occur.) 

The pseudo-Goldstone boson under discussion arises due to a chlral symmetry breaking condensate. We will 
therefore study the effective action which describes the formation of this condensate. In the standard formalism 
[ 12 ] the effective action is a functional of a nonlocal order parameter, the fermion propagator (parametenzed 
by [l)+X(p)]-I in Landau gauge). We make the standard two-loop approximation [ 13]. Renormalization 
effects are accounted for by inserting the running coupling at the gauge vertices. Thxs Introduction of the run- 
ning coupling will be the origin of exphcit breaking of scale invariance. In euclidean space our effective action 
for n flavors of fermions in representation r having dimension d(r)  and quadratic Casimir C2(r) reads 

F-nd(r) i d p p 3 [ 8 r c  2 L P ~ ( P )  21n (  p2+S2(p)'~lp2 //_] 
0 

o o  o o  

3nd(r)C2(r) 3 dPp2_.~_S2(p)P2X(P) f dk k2+X2(k)k22j(k) min(k/p,p/k}cx(max(p,k}). (1) 

0 0 

Minimizing F with respect to the fermion self-energy, Z(p), gives rise to the Schwinger-Dyson equation in 
the ladder approximation, 

3C2(r) i( "' k2X(k) min{p/k, k/p}a(max{p,k}). (2) p2~(p)= 2 ~  _ CtKk2+Z'2(k) 
o 

We will use this equation in its nonlinear form to numerically solve for S(p). We can then study the behavior 
of F under scaling transformations by inserting this solution into F and transforming X(p)--, e°Z(e-Pp). This 
transformation follows from the scaling transformation of the fermion field ~u(x) --,e°~t(e°x). We label the mag- 
nitude of the transformed effective action by F (p). 

In the effective theory below A~, the potential for the PD field, tr(x), should exhibit the same explicit scale 
breaking found in F ;  the potential and F should transform in a similar way under a scale transformation. This 
can be accomplished by taking F (p), promoting the number p in this function to a field tr(x)/F~, and identifying 
the result with the potential V(a(x)). The scale transformation of a dilaton field is tr(x)--,a(e°x)+pFo and 
thus the sense in which V(cr(x)) transforms the same way as F is gwen by 

V( a( e°x) + pFa ) l ~cx)=o = F ( p ) .  (3) 

From F(p) we can extract the PD mass, 

m~ 2 =Fg202F(p) =Oacx) V(a(x))Io(x)=o tp=o • (4) 

We will now give a situation in which we are justified to use just the first term in the following perturbatxve 
evolution equation for the running coupling, 

pOpot(p) = -boeZ(p) + cot 3(p) + d~a(p)  + .... (5) 

We note that chiral symmetry breaking takes place when oz(p) somewhat exceeds the critical value [ 11,13] 
O~c-n/3Cz(r) (by an amount which is small when b as small) [7]. It is then convenient to define ~ ( p ) -  
oe (p) 6'2 (r) and write the evolution equation as 

pOp~(p) = --/~t~ 2 ( p )  + ~t~ 3 (p )  + ff t~4(p) + .. . .  ( 5 ' )  

where ~-b/C2(r), ?=-c/C2(r) 2, 7a--d/C2(r) 3, etc.  Note that &(A~,) ~ O~c C2(r) =n/3~ 1. 
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We wish to make a formal extrapolation to a noninteger number of flavors n; specifically 0 < n < 1. Then for 
n small enough and for some number of colors N we have b ~ N, c ~ N 2, d~  N 3, etc. Thus b'is small and all higher 
order terms can be neglected if we choose the fermlon representation such that C2(r)>>N. Below A~, the fer- 
mions which have condensed out no longer contribute to the fl-function and this in general will modify the 
value of b below A~,. But we may also neglect this effect in this case of small n. 

Thus in the case of  small n and large C2 (r) we are justified to use the lowest order//-function over the whole 
momentum range of interest. By varying ~we will develop a sense for how departures from scale invariance as 
represented by/~translates into a PD mass. This should also give us some feeling for more general situations. 

We also wish to find the PD mass dependence on a high energy cutoff M. This scale breaking effect will be 
introduced via the running coupling by simply setting c¢ (p) = 0 for p > M. This will approximate an embedding 
of our gauge group at the scale M into a strongly asymptotically free gauge group whose coupling above M 
rapidly becomes small, 

For b-> 0, o~(k) at small enough k eventually blows up. This behavior for a(k) is obviously unphysical, and 
we therefore need to introduce a scale/t below which we take a ( k )  = a (/l). But we wish to study results which 
are/l independent. This is accomplished as long as we can choose/2 sufficiently below Z(0) ,  since the integrals 
in (1) and (2) are damped by powers of k/27(0) for k << 27(0). We will monitor the/l  dependence of our results 
and this will provide an upper bound on the value of b-we study. 

We thus use the coupling 

ot(p)=[bln(p./A)] -~, for p</~, 

=[bln(p/A)] -1, for #<p<M, (6) 

=0,  for p>M. 

A is less than/z and is approximately the confinement scale of the theory. 
We now must face the question of what are we comparing the PD mass to? We need to identify a physical 

mass scale characterizing the chiral symmetry breaking which we can hold fixed while varying M and ~. Can- 
dldates for A v, are 27(0 ), the scale k' such that ot ( k' ) = ac,  or the scale k" such that 27(k" ) = k". They all vary in 
a nontrivial manner relative to each other as b-is varied. We will instead choose F~. In the technicolor context 
it is F~, the technipion decay constant, which determines the mass of the W and Z bosons and thus sets the 
physical scale. An explicit expression for F~ has been derived [ 1 4] in terms of 27(k): 

d(r) ~ dk 2k3[X2(k) - ¼k27(k)Z'(k)] 
F 2 - (2rt)2 .J [k 2 +27Z(k)] 2 (7) 

0 

Thus for a given M and b-we hold F~ fixed and simultaneously find a solution to the Schwinger-Dyson equation 
by varying the A appearing in (6). 

To find the PD mass from (4) we need O~F(p)[p=o. We derive an expression for this directly from (1) by 
inserting Z(p) --,e°X(e-Pp) and using O:F(p) [p=o=0. We then find 

rn~t~ = 3nd(r)(A +B)/(F2~ 4rr 3), (8) 

M6.S2(M)~(M) (4M2,S,(M)Gt(M)-M327'(M)t~(M)-M2Z(M)b-&2(M) 
A= [M 2 +Z.2(M)]2 4- M2 +272(M ) 

M 
2MLF,2(M)[27'(M)M-27(M)l&(M) ) kSZ(k) 

4 [M 2 +272(M)1 2 f dk k2 +272(k ) (9) 

(where Z'( M) - OpZ(p) [p=M), 

359 



Volume 187, number  3,4 PHYSICS LETTERS B 26 March 1987 

1.5 

10  

0.5 

0 
0 

f / 

/ 

I i 

0.05 0.I0 0.15 0.20 0.25 0.30 

Fig. 1. (a) f(~,R)/10 for R= 4× 103 (f(~R) is related to the PD 
mass in eq (11 )), (b) contribution to curve (a) neglecting scale 
breaking effect of cutoff M, (c)f(/7,R)/10 for R= l0 s, (d) mTp/F,~ 
for R = 4 × 103 ( m-rp Is techmplon mass), (e) m-rp/F, for R = 105 

M 

B = 4 5 f  "" kSS(k) 
OK k2 + _ F 2 ( k  ) f d p r(p) Pp2 +,S2(p) [ ¢~2(p)  _ b ~ S ( p ) / 2  ] 

o ,u 

M M /g 
k3~r(k) ~ d p  p,S(p) ,~2,  , 5/z2S(/g)t~2(/t) k3~r(k) (10) 

+ 4 5 f  dkk2+,SZ(k ) p2+- - - '~p ) l  tP '-56t3(p) '2]  + - ~ ~  f dkke+,S2(k  ) • 
k 0 

A and B are the contributions due to scale breaking introduced by the c u t o f f M  and a nonzero 5, respectively. 
We will give our results for m~ in terms of  a function f (5 ,R)  where R--d(r)  I/2M/F~: 

m~F~/F 2 = [ n/d( r) ] '/2 f(  ~,R ) . (11) 

f(5,R ) is obtained from (7) and (8) after pulhng out the factors of  n and d(r) .  We will not at tempt to calculate 
F~, but it is expected to be o f  order F~. 

In the following we use &(/t) = 20. The dependence o f  our results on/1 increases as bincreases. The maximum 
value of  5 w e  use, 5=0.3 ,  corresponds to 0(log m~)/O(log lt) ~<0.03. Also, for comparison with the following, 
we note that ,F,(O)/F~ varies from ,~ 5 at 5 = 0  to ~ 10 at 5=0.3 .  

In fig. 1 we display f (5 ,R)  / 10 for R = 4 × 103 (curve a). The contribution to f (~ ,R)  / 10 arising from the run- 
ning coupling, the B term in (8) ,  is also indicated (curve 19). As expected, this vanishes as 5 ~ 0 .  But one surprise 
is the large size o f  this contribution for rather small ~. Thus even a slow logarithmic behavior o f  the running 
coupling translates into a rather large PD mass. The other surprise is that the remaining contribution due to the 
scale breaking effect o f  the cutoff  M is so large. Thus in precisely the limit in which one naively expects a real 
dilaton to emerge, 5 ~ 0 ,  we find that the dilaton can gain significant mass from very high energy effects. 

f(~,,R) / 10 for R = 105 is given by curve c. We see that a light PD would require a very large R, and thus a very 
large physical cutoff  M. But we also note the d(r)1/2 factor in R. This along with the d(r)-1/2 factor in (11 ) 
means that a light PD mass may emerge if the dimension of  the representation r is large enough. 

In a technicolor context we have effective four fermion operators generated at the scale M. For example there 
must be terms of  the form M -z  q~ui'f in order to generate a mass for the quark or lepton f. We are therefore 
interested in the quanti ty 

M 

( ~ )  = d ( r )  - j d 4 k  £ ( k )  ( 1 2 )  
(2n) 4 k :  +X2(k )  " 

This quantity also allows us to compare our  PD mass to a typical neutral, color slnglet technipion mass mrp. 
m-rp may arise due to the presence o f  a term of  the form M - :  ~/~u ~ q/which implies m-rp/F,~ ~ < (/~ )~MFrs. This 
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ratio, independent  o f d ( r ) ,  is d isplayed for R = 4 ×  103 (curve d)  and R =  105 (curve e) .  We remind  the reader  
that  the enhancement  o f  ( ~ )  for small  ~" implies  a larger M for a given quark or  lepton mass and thus a 
suppression of  FCNCs.  

We may use the expression for ( ~ u )  to de termine  the PD Yukawa couplings to quarks and leptons. These 
couplings originate in the M - 2 ~ / i ' f  terms. We f ind them in the same way we found V(a(x)); we make the 
subst i tut ion X(k)--,e°X(e-Pk) in (12) and write the result as some function h(p) t imes ( ~ / ) ,  with h (0 )  = 1. 
We promote  p to a field as before and then f ind that  the Yukawa coupling is h(a(x)/F,)mf~f. For  example in 
the case that /Tis  small  enough [9] ,  X(p) oc 1/p for large p, and  we f ind h(p) = e  2;. Then the Yukawa coupling Is 
exp[2a(x)/F~]mf-ff. The factor of  2 agrees with ref. [3] .  

We have found that  the PD mass seems to bear  no relat ion to the confinement  scale A, which in our  case is of  
order  A~,exp( - 1/~') and  possibly very small. But we note that  there may be a di laton-l ike part icle in the pure 
glue sector, a glueball with a mass of  order  A. Such a part icle should not  be associated with an approximate  scale 
invariance of  the full underlying theory. Also, this glueball would not have the Yukawa couplings expected of  
the PD. 

An uncer ta inty  in our  analysis follows from the neglect of  correct ions to the effective act ion (1) not  accounted 
for by the use of  the running couphng. But it would be surprising to see a large decrease in the PD mass in a 
more  complete  t rea tment .  Our  results should also be indicat ive in cases where we cannot  just i fy the lowest order  
fl-functlon. For  example i f  a strongly interact ing theory happened  to be approximate ly  scale invar iant  over  
some range of  energies, perhaps due to a nearby fixed point,  then this energy range would have to be very large 
for a light di la ton to emerge. 

B.H. has enjoyed conversat ions with T. Appelquis t  and L. Wijewardhana.  This research was suppor ted  in 
part  by the Natura l  Sciences and Engineering Research Council  o f  Canada.  
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